

SET - 1

#### II B. Tech II Semester Regular Examinations, April/May - 2016 RANDOM VARIABLES AND STOCHASTIC PROCESSES (Electronics and Communications Engineering)

Time: 3 hours

Max. Marks: 70

- Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. Answer **ALL** the question in **Part-A** 
  - 3. Answer any **THREE** Questions from **Part-B**

### PART -A

| 1. | a)         | Define probability mass function and list its properties.                                                                     | (3M)          |
|----|------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
|    | b)         | Show that the first central moment is zero.                                                                                   | (4M)          |
|    | c)         | Define central limit theorem.                                                                                                 | (4M)          |
|    | d)         | Distinguish between deterministic and non-deterministic random processes.                                                     | (3M)          |
|    | e)         | Show that $S_{XX}(-\omega) = S_{XX}(\omega)$ .                                                                                | (4M)          |
|    | f)         | A WSS random process $X(t)$ is applied to the input of an LTI system with transfer                                            | (4M)          |
|    |            | function $H(\omega) = \frac{3}{2+j\omega}$ . Find the mean of the output $Y(t)$ of the system if                              |               |
|    |            | E[X(t)] = 2.                                                                                                                  |               |
|    |            | <u>PART -B</u>                                                                                                                |               |
| 2. | a)         | Two dice are thrown. The square of the sum of the points appearing on the two                                                 | (8M)          |
|    |            | dice is a random variable $X$ . Determine the values taken by $X$ , and the                                                   |               |
|    |            | corresponding probabilities.                                                                                                  |               |
|    | b)         | State and prove the properties of probability density function.                                                               | (8M)          |
| 2  | `          |                                                                                                                               |               |
| 3. | a)         | Let $Y = 2X + 3$ . If the random variable X is uniformly distributed over [-1, 2],                                            | (8M)          |
|    | 1 \        | determine $f_Y(y)$ .                                                                                                          |               |
|    | b)         | Find the second central moment of a random variable with PDF $\int_{-\pi}^{\pi} dx = -\pi r^{2}$                              | (8M)          |
|    |            | $f_X(x) = ae^{-ax}u(x)$                                                                                                       |               |
| 4  |            | State control limit theory for the following access                                                                           | (91)          |
| 4. | a)         | State central limit theorem for the following cases:                                                                          | (8M)          |
|    | <b>b</b> ) | i) Equal distributions ii) Unequal distributions<br>Determine $f_{i}(x)$ in terms of $f_{i}(x)$ and $f_{i}(x)$ if $T = V + V$ | ( <b>9M</b> ) |
|    | b)         | Determine $f_Z(z)$ in terms of $f_X(x)$ and $f_Y(y)$ , if $Z = X + Y$ .                                                       | (8M)          |
| 5. | a)         | Give the classification of random processes.                                                                                  | (8M)          |
|    | b)         | A random process is given by $X(t) = A \cos(\omega_c t + \Theta)$ , where $\omega_c$ is a constant and                        | (8M)          |
|    |            | A and $\Theta$ are independent random variables uniformly distributed in the ranges                                           |               |
|    |            | (-1, 1) and (0, 2 $\pi$ ), respectively. Determine $R_{XX}(t_1, t_2)$ .                                                       |               |
|    |            |                                                                                                                               |               |
| 6. | a)         | For each of the following functions, state whether it can be valid PSD of a real                                              | (8M)          |
|    |            | random process: i) $\frac{(2\pi f)^2}{(2\pi f)^2+16}$ ii) $j[\delta(f+f_o)+\delta(f-f_o)]$                                    |               |
|    | <b>.</b> . |                                                                                                                               |               |
|    | b)         | State and prove the properties of power spectral density.                                                                     | (8M)          |
| 7. | a)         | Let $Y(t)$ be the output of an LTI system with impulse response $h(t)$ . Find the                                             | (8M)          |
|    | )          | cross-correlation between the input $X(t)$ and output $Y(t)$ .                                                                | (0111)        |
|    | b)         | Write notes on the following terms: i) Thermal noise ii) Narrowband noise                                                     | (8M)          |
|    | 5,         |                                                                                                                               | (0111)        |



**SET - 2** 

# II B. Tech II Semester Regular Examinations, April/May - 2016 RANDOM VARIABLES AND STOCHASTIC PROCESSES

Time: 3 hours

(Electronics and Communications Engineering)

Max. Marks: 70

- Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. Answer **ALL** the question in **Part-A** 
  - 3. Answer any **THREE** Questions from **Part-B**

## PART -A

| 1. | a) | Define mixed random variable and give an example.                                                                                                                                                                                                                                            | (3M) |
|----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    | b) | The random variable X takes the values 0 and 1 with probabilities $\alpha$ and $\beta$ respectively. Find the mean of X.                                                                                                                                                                     | (4M) |
|    | c) | List any three properties of jointly Gaussian random variables.                                                                                                                                                                                                                              | (3M) |
|    | d) | Show that $ R_{XX}(\tau)  \le R_{XX}(0)$ .                                                                                                                                                                                                                                                   | (4M) |
|    | e) | Show that $S_{XY}(\omega) = S_{YX}^*(\omega)$ .                                                                                                                                                                                                                                              | (4M) |
|    | f) | Define generalized Nyquist theorem.                                                                                                                                                                                                                                                          | (4M) |
|    |    | PART –B                                                                                                                                                                                                                                                                                      |      |
| 2. | a) | Distinguish between discrete, continuous and mixed random variables with suitable examples.                                                                                                                                                                                                  | (8M) |
|    | b) | A binary source generates digits 1 and 0 randomly with probabilities 0.6 and 0.4, respectively. What is the probability that two 1s and three 0s will occur in a five-<br>digit sequence. Hint: Let $X$ be the random variable denoting the number of 1s generated in a five-digit sequence. | (8M) |
| 3. | a) | Let $Y = X^2$ . Find $f_Y(y)$ , if $X = N(0; 1)$ .                                                                                                                                                                                                                                           | (8M) |
|    | b) | Define characteristic function and list its properties.                                                                                                                                                                                                                                      | (8M) |
| 4. | a) | If X and Y are independent, then show that $E[XY] = E[X]E[Y]$ .                                                                                                                                                                                                                              | (8M) |
|    | b) | Let <i>X</i> and <i>Y</i> be defined by $X = cos\Theta$ and $Y = sin\Theta$ , where $\Theta$ is a random variable uniformly distributed over $[0,2\pi]$ . Show that <i>X</i> and <i>Y</i> are not independent.                                                                               | (8M) |
| 5. | a) | Show that for a WSS process $X(t)$ , $R_{XX}(0) \ge  R_{XX}(\tau) $ .                                                                                                                                                                                                                        | (8M) |
|    | b) | Given a random process $X(t) = kt$ , where k is a random variable uniformly distributed in the range (-1, 1). Is the process ergodic?                                                                                                                                                        | (8M) |
| 6. | a) | Show that the power spectrum of a real random process $X(t)$ is real.                                                                                                                                                                                                                        | (8M) |
|    | b) | Define cross power spectral densities and list all the properties cross PSDs.                                                                                                                                                                                                                | (8M) |
| 7. | a) | Suppose that the input to a differentiator is the WSS random process. Determine the power spectral density of output.                                                                                                                                                                        | (8M) |
|    | b) | Derive the expression for noise figure of two-stage cascaded network.                                                                                                                                                                                                                        | (8M) |
|    |    | 1 of 1                                                                                                                                                                                                                                                                                       |      |



Max. Marks: 70

# II B. Tech II Semester Regular Examinations, April/May - 2016 RANDOM VARIABLES AND STOCHASTIC PROCESSES

Time: 3 hours

(Electronics and Communications Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer ALL the question in Part-A

3. Answer any **THREE** Questions from **Part-B** 

## PART -A

| 1. | a)       | What are the conditions for a function to be a random variable?                                                                                                                                                                                                                                          | (4M)         |
|----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|    | b)       | Find the relationship between $f_X(x)$ and $f_Y(y)$ if $Y = aX + b$ .                                                                                                                                                                                                                                    | (4M)         |
|    | c)       | Define marginal probability density functions.                                                                                                                                                                                                                                                           | (3M)         |
|    | d)       | Define : i)covariance-stationary random process<br>ii) Autocorrelation-stationary random process                                                                                                                                                                                                         | (4M)         |
|    | e)       | If $R_{YY}(\tau) = R_{XX}(\tau)\cos(\omega_c \tau)$ , determine $S_{YY}(\omega)$ .                                                                                                                                                                                                                       | (4M)         |
|    | f)       | List the properties of narrowband random process.                                                                                                                                                                                                                                                        | (3M)         |
|    |          | <u>PART –B</u>                                                                                                                                                                                                                                                                                           |              |
| 2. | a)       | The PDF of a random variable is given by $f_X(x) = ke^{-ax}u(x)$ , where <i>a</i> is a positive constant. Determine the value of constant <i>k</i> .                                                                                                                                                     | (8M)         |
|    | b)       | A noisy transmission channel has a per-digit error probability $p_e = 0.001$ .<br>Determine the probability of more than one error in 100 received digits using                                                                                                                                          | (8M)         |
| 3. | a)       | Poisson approximation.<br>Let $Y = aX + b$ . Find the PDF of Y, if $X = N(\mu; \sigma^2)$ .                                                                                                                                                                                                              | (8M)         |
|    | b)       | State and prove Chebychev's inequality.                                                                                                                                                                                                                                                                  | (8M)         |
| 4. | a)<br>b) | Let Z is the sum of two independent random variables X and Y. Find the PDF of Z. List all the properties of jointly Gaussian random variables.                                                                                                                                                           | (8M)<br>(8M) |
|    | 0)       | List an the properties of jointry Gaussian random variables.                                                                                                                                                                                                                                             | (0111)       |
| 5. | a)       | Sketch the ensemble of the random process $X(t) = Acos(\omega_c t + \Theta)$ , where $\omega_c$ and $\Theta$ are constants and A is a random variable uniformly distributed in the range $(-A, A)$ . Just by observing the ensemble, determine whether this is a stationary or a non-stationary process. | (8M)         |
|    | b)       | List all the properties of auto-correlation function.                                                                                                                                                                                                                                                    | (8M)         |
| 6. |          | State and prove Wiener-Khinchin relation.                                                                                                                                                                                                                                                                | (16M)        |
| 7. | a)       | Derive the relationship between autocorrelation of output random process of an LTI system when the input is a WSS process.                                                                                                                                                                               | (8M)         |
|    | b)       | Describe the method of modeling a thermal noise source.                                                                                                                                                                                                                                                  | (8M)         |
|    |          |                                                                                                                                                                                                                                                                                                          |              |

1 of 1



**SET - 4** 

#### II B. Tech II Semester Regular Examinations, April/May - 2016 RANDOM VARIABLES AND STOCHASTIC PROCESSES (Electronics and Communications Engineering)

Time: 3 hours

Max. Marks: 70

- Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. Answer **ALL** the question in **Part-A** 
  - 3. Answer any **THREE** Questions from **Part-B**

### PART -A

| 1. | a)         | A noisy transmission channel has a per-digit error probability $p_e = 0.01$<br>Calculate the probability of more than one error in 10 received digits. | (4M)   |
|----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|    | b)         | Determine the mean value of uniform random variable.                                                                                                   | (4M)   |
|    | c)         | When the two random variables X and Y are said to jointly Gaussian.?                                                                                   | (3M)   |
|    | d)         | Autocorrelation of a random process $X(t)$ is given by $\frac{A^2}{2}\cos(\omega \tau)$ . Determine the                                                | (4M)   |
|    |            | mean-square value of $X(t)$ .                                                                                                                          |        |
|    | e)         | If $R_{XX}(\tau) = A^2 e^{-2\alpha  \tau }$ , determine $S_{XX}(\omega)$ .                                                                             | (4M)   |
|    | f)         | Draw the power spectrum of                                                                                                                             | (3M)   |
|    |            | i) White noise ii) Band-limited white noise                                                                                                            |        |
|    |            | <u>PART –B</u>                                                                                                                                         |        |
| 2. | a)         | Define the conditional density and distribution functions. List all the properties of conditional density and distribution functions.                  | (8M)   |
|    | b)         | In an experiment, a trial consists of two successive tosses of a fair coin. If a                                                                       | (8M)   |
|    | - /        | random variable X takes the number of tails appearing in a trial, determine the                                                                        | (- )   |
|    |            | CDF of X.                                                                                                                                              |        |
|    |            |                                                                                                                                                        |        |
| 3. | a)         | Write notes on monotonic transformations for a continuous random variable.                                                                             | (8M)   |
|    | b)         | Show that $E[X + Y] = E[X] + E[Y]$ .                                                                                                                   | (8M)   |
|    |            |                                                                                                                                                        |        |
| 4. | a)         | The joint PDF of two continuous random variables is given by                                                                                           | (8M)   |
|    |            | $f_{xy}(x, y) = xy e^{-x^2} \cdot e^{\frac{-y^2}{2u(x)u(y)}}$                                                                                          |        |
|    |            |                                                                                                                                                        |        |
|    |            | Are X and Y independent?                                                                                                                               |        |
|    | b)         | Write notes on linear transformation of Gaussian random variables.                                                                                     | (8M)   |
| ~  | `          |                                                                                                                                                        |        |
| 5. | a)         | A random process is given by $X(t) = at + b$ , where b is a constant and a is an r.v                                                                   | (8M)   |
|    | <b>b</b> ) | uniformly distributed in the range (-2, 2). Is the process WSS?                                                                                        | (91)   |
|    | b)         | Derive an expression that relates autocorrelation function and auto covariance function.                                                               | (8M)   |
|    |            | Tulktion.                                                                                                                                              |        |
| 6. |            | Show that the autocorrelation function and power spectral density forms Fourier                                                                        | (16M)  |
| 0. |            | transform pair.                                                                                                                                        | (1000) |
|    |            | I                                                                                                                                                      |        |
| 7. |            | Write notes on the following:                                                                                                                          |        |
|    | a)         | Band limited white noise                                                                                                                               | (8M)   |
|    | b)         | Thermal noise                                                                                                                                          | (8M)   |